Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Vet Sci ; 11: 1275293, 2024.
Article in English | MEDLINE | ID: mdl-38318150

ABSTRACT

Introduction: Paneth cells are critically important to intestinal health, including protecting intestinal stem cells, shaping the intestinal microbiome, and regulating host immunity. Understanding Paneth cell biology in the immature intestine is often modeled in rodents with little information in larger mammals such as sheep. Previous studies have only established the distribution pattern of Paneth cells in healthy adult sheep. Our study aimed to examine the ontogeny, quantification, and localization of Paneth cells in fetal and newborn lambs at different gestational ages and with perinatal transient asphyxia. We hypothesized that ovine Paneth cell distribution at birth resembles the pattern seen in humans (highest concentrations in the ileum) and that ovine Paneth cell density is gestation-dependent. Methods: Intestinal samples were obtained from 126-127 (preterm, with and without perinatal transient asphyxia) and 140-141 (term) days gestation sheep. Samples were quantified per crypt in at least 100 crypts per animal and confirmed as Paneth cells through in immunohistochemistry. Results: Paneth cells had significantly higher density in the ileum compared to the jejunum and were absent in the colon. Discussion: Exposure to perinatal transient asphyxia acutely decreased Paneth cell numbers. These novel data support the possibility of utilizing ovine models for understanding Paneth cell biology in the fetus and neonate.

2.
Pediatr Ann ; 52(8): e283-e291, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37561828

ABSTRACT

Miller-Dieker syndrome (MDS) is a rare disease characterized by type I lissencephaly, craniofacial dysmorphisms, intellectual disability, seizures, and death in early childhood. We report a case of a premature infant with MDS with an anomalous right coronary artery from the pulmonary artery who developed sudden bowel ischemia. This case prompts the reconsideration of cardiovascular involvement in patients with MDS. In addition, this review highlights key clinical features and reviews the critical manifestations of MDS that persist into childhood. [Pediatr Ann. 2023;52(8):e283-e291.].


Subject(s)
Abnormalities, Multiple , Classical Lissencephalies and Subcortical Band Heterotopias , Infant , Infant, Newborn , Humans , Child, Preschool , Abnormalities, Multiple/diagnosis , Pulmonary Artery , Coronary Vessels , Ischemia
3.
Front Pediatr ; 11: 1161342, 2023.
Article in English | MEDLINE | ID: mdl-37082706

ABSTRACT

NEC remains one of the most common causes of mortality and morbidity in preterm infants. Animal models of necrotizing enterocolitis (NEC) have been crucial in improving our understanding of this devastating disease and identifying biochemical pathways with therapeutic potential. The pathogenesis of NEC remains incompletely understood, with no specific entity that unifies all infants that develop NEC. Therefore, investigators rely on animal models to manipulate variables and provide a means to test interventions, making them valuable tools to enhance our understanding and prevent and treat NEC. The advancements in molecular analytic tools, genetic manipulation, and imaging modalities and the emergence of scientific collaborations have given rise to unique perspectives and disease correlates, creating novel pathways of investigation. A critical review and understanding of the current phenotypic considerations of the highly relevant animal models of NEC are crucial to developing novel therapeutic and preventative strategies for NEC.

SELECTION OF CITATIONS
SEARCH DETAIL
...